A pictorial Essay of Imaging -Vascular Anomalies of Limbs

Hye Sang MD,  Tae min Lee MD,  Yoo Jin Hong, Wong Jhu

Abstract :

Vascular anomalies, including vascular malformations and tumors, are frequently straightforward to detect; however, accurate diagnosis and appropriate treatment are often challenging. Misdiagnosis of these lesions can lead clinicians in the wrong direction when treating these patients, which can have unfavorable results.

This review presents an overview of the classification systems that have been developed for the diagnosis of vascular lesions with a focus on the imaging characteristics. Pictorial examples of each lesion on physical examination, as well as non-invasive and minimally invasive imaging are presented. An overview of the endovascular treatment of these lesions is also given. In some cases, vascular anomalies may be associated with an underlying syndrome and several of the most commonly encountered syndromes are discussed. Understanding of the classification systems, familiarity with the treatment options and knowledge of the associated syndromes are essential for all physicians working with this patient population. The approach to the described entities necessitates an organized multi-disciplinary team effort, with diagnostic imaging playing an increasingly important role in the proper diagnosis and a combined interventional radiological and surgical results shows promising results.


Key Words: Vascular malformation; Lymphatic malformation; Overgrowth syndromes; Arteriovenous malformation; Hemangioma


Anatomist and obstetrician William Hunter first described vascular anomalies in the mid-18th century in the context of iatrogenic creation of arteriovenous fistulas by phlebotomists[1]. Over the next century, description of these and more complex vascular lesions was furthered by the work of Dupuytren, Virchow, and others but the lack of a cohesive system of classification led to confusion, hampering further understanding of these entities. Since that time, categorization of these lesions has advanced from primitive descriptions and disorganized nomenclatures to a more a structured catalogue of classification.  Mulliken and Glowacki pioneered this transformation[2], while the Hamburg classification system further refined it[3]. Early attempts at classification were based on the pathological appearance of the lesions without consideration for underlying biologic behavior. Terms such as “erectile tumors,” “naevus maternus,” and “stigma metrocelis” were applied without clear delineation[2]. It wasn’t until 1982, when Mulliken and Glowacki introduced a classification system rooted in the pathophysiology of these lesions that much of the confusion surrounding these lesions was clarified[2]. This system divided vascular anomalies into two categories: vascular tumors (hemangiomas) and vascular malformations. This standard was adopted by the International Society for the Study of Vascular Anomalies (ISSVA)[3,4] and continues to be embraced by many clinicians in current practice. Subsequent modifications to this classification system have included the addition of other rare vascular tumors distinct from hemangiomas, including tufted angioma, Kaposiform hemangioendothelioma, angiosarcoma and others. With these additions, vascular anomalies continue to be divided into two categories: vascular tumors, which include hemangiomas, and vascular malformations. Several years later, the Hamburg classification system adopted an embryologic perspective to further aid in the classification of vascular malformations[3]. Lesions are identified first based on the prevailing vascular structure involved- arterial, venous, lymphatic, or capillary, also considering arteriovenous shunting and combined vascular defects[3]. The embryological background of the lesion is then considered for additional delineation[5]. Extratruncular lesions result from developmental arrest in the early reticular embryonic stage, prior to the development of vascular trunks. Extratruncular malformations may be infiltrating and diffuse or limited and localized. Truncular lesions result from a defect occurring during the stage of fetal development following the reticular stage, as the vascular trunks are developing. Truncular forms develop from stenosis or obstruction of vascular trunks, with resulting hypoplasia, or dilatation of vascular trunks, which in turn may be localized or diffuse[6].

Vascular Tumours:

In their seminal paper, Mulliken and Glowacki[2], reported vascular tumors – then referred to as hemangiomas – to demonstrate specific mitotic activity and eventual involution, setting them apart from vascular malformations. Much has been discovered about vascular tumors, and while beyond the scope of this discussion, this information encompasses a variety of different entities. These include but are not limited to infantile hemangiomas and rapidly involuting and noninvoluting congenital hemangiomas, as well as more aggressive tumors, such as tufted angiomas, Kaposiform hemangioendotheliomas, and angiosarcomas. Infantile hemangiomas are the most common tumor of infancy and childhood affecting up to 12% of children with a female preponderance[7,8]. Histologically, these lesions stain positively for glucose transporter-1 protein (GLUT-1). Tumors typically appear between 2 wk and 2 mo of life and follow a proliferating phase, an involuting phase, and a state of complete involution[9,10]. Congenital hemangiomas are tumors that demonstrate intrauterine development with growth completed at birth[11]. These lesions more commonly affect the extremities, close to the joint, or on the head and neck, close to the ear[12]. In contrast to infantile hemangiomas, these lesions stain negative for GLUT-1[11,12]. Lesions are divided into two categories based on biologic activity: rapidly involuting congenital hemangiomas (RICHs) and noninvoluting congenital hemangiomas (NICHs). RICHs typically regress within 6-14 mo while NICHs do not regress and have a tendency for progression, usually leading to surgical excision[12]. Kaposiform hemangioendothelioma is a rare vascular neoplasm, which usually arises in the skin and infiltrates into the deeper tissues over time. Most cases are associated with consumptive coagulopathy or Kasabach-Merritt Syndrome, as well as lymphangiomatosis[13].





Vascular malformations:

Vascular malformations are structural lesions resulting fromrom errors of vascular morphogenesis[2]. Differentiation of vascular malformations into high flow, low flow or mixed lesions is critical in developing treatment strategies. The distinction of truncal from extratruncal may provide insight in predicting response to treatment

Imaging of Vascular anomalies:

Several noninvasive imaging modalities are useful in characterizing vascular anomalies, contributing information about lesion size, flow characteristics and relationship to adjacent structures[14]. Conventional radiography plays a minor role, though may be valuable in defining bone and joint involvement and presence of phleboliths[14] .Contrast enhanced computed tomography (CT) and CT angiograph are useful in evaluating osseous involvement and phleboliths, but also provides information about enhancement, thrombosis, calcification, vascular anatomy and involvement of adjacent structures[14]. The use of ionizing radiation and relatively limited ability to provide information about flow dynamics decreases its usefulness. For these reasons ultrasonography (US) and magnetic resonance imaging (MRI) are the primary noninvasive imaging modalities used in the evaluation of vascular anomalies[15]. US is indispensable in the evaluation of superficial vascular lesions given its low cost, ease of use, high temporal and spatial resolution, and ability to evaluate flow dynamics[14,16]. With US, hemangiomas are reliably differentiated from vascular malformations based on depiction of a well-circumscribed solid mass[16]. Hemangiomas and high-flow vascular malformations, including arteriovenous malformations (AVMs) and arteriovenous fistulae (AVFs), demonstrate arterial and venous waveforms on pulsed Doppler US, but are differentiated based on a lack of associated mass in AVMs and AVFs[15,16]. AVMs and AVFs will contain multiple enlarged subcutaneous arteries and veins on grey scale and color Doppler US with associated low-resistance arterial and venous waveforms on pulsed Doppler US[15,16]. Low-flow vascular malformations, including venous and lymphatic malformations, can be differentiated from high flow lesions based on Doppler analysis. Venous malformations contain enlarged subcutaneous vessels without an associated mass, are compressible and demonstrate venous flow on color and pulsed Doppler US[16]. Lymphatic malformations are characterized by macrocystic or microcystic spaces with or without debris separated by septae. On color and pulsed Doppler US these cysts will contain no flow, however the septa may contain small arteries and veins[16]. US is limited in its ability to evaluate deep lesions and lesions that involve bone[14]. MRI is the most valuable modality for imaging vascular anomalies due to its superior contrast resolution, ability to characterize flow dynamics, depiction of deep and adjacent structures and lack of ionizing radiation[14]. Most information needed to characterize a vascular anomaly can be obtained from T1-weighted, fat saturated T2-weighted and gradient echo MR sequences[15]. Basic MR imaging protocols should include each of these sequences in the axial plane along with fast spin echo T2weighted images in the coronal and sagittal planes[15,17]. Dynamic contrast-enhanced MRI can provide supporting information about flow dynamics[18] and may also be employed. On MRI, hemangiomas will appear as a mass[15,19] with flow voids and intermediate signal on T1-weighted images, flow voids and high signal on T2-weighted images, high signal within vessels on gradient echo sequences and arterial enhancement on contrast enhanced images[15, 19]. High-flow vascular malformations including AVMs and AVFs will also demonstrate flow voids and intermediate signal on T1-weighted images, flow voids and high signal on T2-weighted images, high signal within vessels on gradient echo sequences and arterial enhancement on contrast enhanced images, but no associated soft tissue mass[14-19]. Low flow lesions including venous malformations and lymphatic malformations can also be differentiated based on MRI. Venous malformations will appear as multiple serpentine tubular structures or amorphous dilated channels containing intermediate signal on T1 weighted images, high signal on T2 weighted images, intermediate signal on gradient echo sequences and delayed enhancement on dynamic contrast enhanced MRI[14-19]. Flow voids are not seen within venous malformations due to a lack of fast-flowing blood. Lymphatic malformations are characterized by micro- or macrocystic spaces that often contain fluid-fluid levels due to hemorrhage or proteinaceous material within the cysts[15] .Cysts will often be hyperintense on T2-weighted images, hypointense on T1 weighted images (though may be iso- to hyperintense depending on proteinaceous contents), and will not enhance[15,19]. When microcystic, the cystic spaces may not be visible with the fibrovascular stroma seen as regions of intermediate signal on T1-weighted images and high signal on T2-weighted images with associated enhancement on post-contrast images.

Low Flow Vascular Anomalies:

Capillary malformations present as flat pink or red macules that do not involute. These lesions result from abnormal morphogenesis of superficial dermal blood vessels, which lead to ectatic papillary dermal capillaries and postcapillary venules[20]. Histologically, these lesions stain positive for fibronectin, von Willebrand factor, and collagenous basement membrane proteins[21]. Particularly, in port wine stains, there is increased expression of vascular endothelial growth factor VEGF-A as well as its most active receptor VEGF-R2, which is suggestive of an underlying mechanism for pathogenesis[22]. These lesions occur in 0.3% of newborns without preponderance for gender[23]. Detection typically occurs at birth, although acquired capillary malformations are rarely identified. Capillary malformations can be seen with several different syndromes as described later.










Lymphatic malformations:

Lymphatic malformations arise from abnormal development of the lymphatic system during the early phases of angiogenesis and may be diffuse, often described as lymphedema, or localized, commonly described as a lymphangioma[20]. These malformations are typically large, spongy masses that are non-tender. These lesions can affect any area of the body, but there is a propensity for the head and neck, where they are often referred to as cystic hygromas[20]. Sixty five to 75% of lesions present at birth whereas the remainder of cases appear within 2 years of age[24]. While most lesions are sporadic, some are occur as part of syndromes, such as CLOVES (Figure 3). Complications of these lesions may include bleeding or infection for superficial lesions and encroachment on other anatomic structures such as airways or abdominal viscera for deep lesions. Lymphatic malformations may be macrocystic (Figures 4, 5), consisting of lymphatic spaces arbitrarily fined as greater than two centimeters in diameter, microcystic, or a combination of macrocystic and microcystic. As these lesions are commonly encountered in infants and children ultrasound plays an important role in the diagnosis, staging, and treatment of lymphatic malformations. MR is useful in determining the type and anatomic relationships of lesions but often requires sedation or general anesthesia in children.

High Flow vascular malformation-

High flow vascular malformation exhibits variable presentation dependent on location (Figures 11, 12). Superficial lesions may present as a warm painless mass with palpable bruit and associated dilated veins. Skin erosion and bleeding is possible (Figure 12). Deeper lesions may present with steal phenomena as the malformation deprives blood flow from downstream structures. Staging of these lesions can be accomplished by scoring according to the Schobinger clinical staging system[20,42]. Within this system, stage  describes a phase of quiescence where there is a cutaneous blush and skin warmth. In stage , there is expansion with a darkening blush, lesion pulsation, as well as a bruit or palpable thrill. Stage  is defined by destruction, namely pain, dystrophic skin changes, ulceration, distal ischemia, and steal. Finally, stage  is marked by decompensation or high output cardiac failure. High flow vascular malformations include macrofistulas, or truncular malformations, that consist of single or multiple arteries directly communicating with outflow veins without an interposed high resistance capillary system. In contrast, arteriovenous malformations, which are often extratruncular, consist of a low resistance nidus recruiting blood supply from numerous regional inflow arteries and draining by multiple outflow veins.

Fig 2-High flow vascular anomalies- hemangioma









Syndromes associated with high flow and mixed venous malformations:

Hereditary hemorrhagic telangiectasia S Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder involving mutations in the transforming growth factor-beta signaling pathway result

ing in irregular cytoskeletal architecture and abnormal vascular tubule formation characterized by telangiectasias and fistulous malformations. Incidence is estimated to be between 1 in 5000 to 8000 with males and females affected equally[52,53]. Onset of symptoms most commonly occurs within the second and third decades of life. Telangiectasias are seen on mucosal surfaces and associated with epistaxis and gastrointestinal bleeding. Arteriovenous fistulas, particularly in the lung, liver, brain and gastrointestinal tract are a major source of morbidity and mortality. While 30% of patients with HHT have pulmonary arteriovenous fistulas, 80% of pulmonary arteriovenous fistulas occur in patients with HHT. As these fistulas act as right to left shunts, patients can present with hypoxia, stroke or brain abscess and less frequently hemoptysis or hemothorax. Lesions may be single or multiple. Simple lesions consist of fistulas between a single segmental branch of the pulmonary artery and the pulmonary vein, or complex with multiple segmental pulmonary artery branches supplying the fistula. Fistulas with arterial supply greater than 3 mm in diameter are considered at greatest risk of complication. Surgical resection of pulmonary arteriovenous fistulas has currently been replaced by transcatheter occlusion. Superselective catheterization of the feeding pulmonary arterial branch close to the site of arteriovenous communication is required for placement of coils. Coil size selection, usually 20% larger than the target artery, is critical to avoid systemic coil embolization. Complete occlusion of each feeding artery is critical. Occasionally, occlusion of the aneurysmal draining vein can precede arterial occlusion in order to prevent systemic coil loss (Figure 17). Success of coil embolization approaches 80% but recanalization of the occluded artery or recruitment of additional feeding arterial supply results in recurrence of the fistula in up to 25% of patients, necessitating retreatment[54]. Careful follow-up of patients, therefore, is essential. Detachable coils or use of the Amplatzer occluder device may increase the safety of the procedure in select cases.

Figure 3- MR T1 sequence show high flow anomalies.










Figure 4- MR axial T1 W sequences, showing lymphatic malformations










Parkes Weber syndrome

Parkes Weber Syndrome is an OSCVA syndrome[55] (Overgrowth Syndrome with Complex Vascular Anomalies), characterized by extremity overgrowth and vascular anomaly. In contrast to the Klippel Trenaunay syndrome, venous abnormalities are associated with high flow arteriovenous malformations within the hypertrophied extremity. A third component of the syndrome is a cutaneous capillary malformation. Arteriovenous fistulas may form around the time of puberty, and exacerbation of the vascular abnormalities is associated with trauma (Figure 17).

PTEN Hamartoma Syndrome

PTEN mutations promote stimulation of angiogenesis by the Akt/mTOR pathway[56]. PTEN Hamartoma Syndrome (PHTS) usually involves cutaneous lesions, capillary or capillary venous malformations, typically small deep tissue vascular malformations, and multiple high flow AVMs, associated with hamartomatous lesions[55]. Occasionally, lymphatic and venous malformations may be present. High flow AVMs may be present in the limbs, paraspinal region and dura. They are frequently intramuscular and associated with ectopic fat. The hamartomatous lesion, comprised of vascular clusters, fibrous tissue, large veins and fat, has been termed PTEN hamartoma of soft tissue. Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome (BRRS) and some instances of Proteus syndrome are classified together with PHTS. More extensive high flow AVMs are occasionally seen in the BRRS.

Syndromes associated with low flow vascular malformations:

Klippel trenaunay syndrome

Klippel trenaunay syndrome (KTS) is another OSCVA syndrome with extremity overgrowth, associated with a superficial vascular stain, venous malformations, and usually partial aplasia of the deep venous system. The syndrome may also involve lymphatic anomalies. The vascular venous vascular malformations in KTS are characterized as truncal malformations, and may be related to persistence of the embryonic dorsal vein system in the lateral aspect of the extremity (lateral marginal vein in the lower extremity). Large varicosities may result in venous thrombosis and pulmonary embolism. Coagulopathy and gram-negative sepsis are also complications. Limb gigantism is especially prominent when there is an associated lymphatic malformation. MRI is the mainstay of imaging in KTS, with sonography reserved for guiding interventions and for distinguishing venous from lymphatic components of malformations (Figures 18, 19). Catheter based venography is occasionally needed to determine the presence, absence or partial aplasia of the deep venous system, when this is not obvious on other imaging modalities.

CLOVES Syndrome

The congenital lipomatous overgrowth, vascular malformations, epidermal nevi, and scoliosis and other skeletal deformities (CLOVES) syndrome consists of truncal lipomatosis, vascular malformations, and acral/musculoskeletal anomalies. The lipomatous lesions are often infiltrative and tend to recur following resection. Skeletal overgrowth and malformation are common in the extremities, as is scoliosis. Vascular lesions include capillary, lymphatic, venous and arteriovenous malformations. In contrast to the Proteus and BRRS syndrome there is no mental impairment. Treatment includes sclerotherapy of lymphatic and venous malformations and resection of lipomatous lesions[55].

Blue rubber bleb nevus syndrome

This syndrome consists of venous malformations of the skin and those within the gastrointestinal tract. The skin lesions are comprised of a compressible blue subcutantion. Clinical consequences generally result from gastrointestinal venous malformations, which may lead to occult or frank gastrointestinal bleeding.

Maffucci syndrome

In this syndrome, enchondromas are found in coexistence with venous malformations. There is a high frequency of malignant transformation of the enchondromas into chondrosarcomas. 

Fig 5- Maffuci syndrome with multiple enchondromatosis with hemangioma










Generalized Lymphatic Anomaly and Gorham-Stout disease Generalized Lymphatic Anomaly (GLA) and GorhamStout Disease are two different disorders of the lymphatic system with overlapping features[57]. GLA is synonymous with “generalized cystic lymphangiomatosis” cystic angiomatosis” and “lymphangiomatosis,” though the term GLA is preferred based on the ISSVA classification system. GLA is a multisystem disorder characterized by dilated lymphatic vessels[58,59]. Features of GLA may include splenic cysts, hepatic cysts, pleural effusions, and macrocytic lymphatic malformations, which may involve several organ systems, including bone[57-59]. On imaging, osseous lesions in GLA are seen as lucent lesions within the medullary cavity on radiography and display hyperintensity on T2-weighted MR imaging, but do not demonstrate cortical destruction[57,60]. Numerous bones are typically affected in GLA, and the axial and appendicular skeleton are both affected with similar frequency[57]. In cases of osseous involvement, patients may present with pain and pathologic fracture. Gorham-Stout disease, which has been called vanishing bone disease,” is also a vascular anomaly of the lymphatics characterized by proliferation of lymphatic vessels within bone, resulting in progressive bony destruction[61]. Though the skeletal system is the primary site of disease in GSD, extra-osseous findings are also seen in GSD and include pleural effusions, splenic cysts, hepatic cysts, and infiltrating soft tissue abnormalities, which may extend from the bone into the adjacent soft tissues[57]. On imaging, osseous lesions are lytic, as in GLA, but are characterized by progressive osseous resorption and cortical destruction. On MRI, osseous lesions in GSD are most frequently accompanied by infiltrating soft tissue signal that is iso-to hypointense to muscle on T1-weighted images, hyperintense and heterogeneous on T2 weighted images, and enhances with contrast[57,62]. Infiltrative soft tissue is less common in GLA, which is seen in a minority of cases[57]. Unlike GLA, which affects the appendicular and axial skeleton with similar frequency, the axial skeleton is more commonly affected in GSD, with appendicular involvement seen in a minority of cases[57]. Macrocytic lymphatic malformations are infrequently seen in GSD[57]. As in GLA, patients with GSD may present with pain and pathologic fracture


Accurate diagnosis of vascular malformations and their associated syndromes is often challenging but crucial in the formulation of appropriate treatment. The approach to the described entities requires an organized multidisciplinary team effort, with diagnostic imaging playing an increasingly important role in the proper diagnosis and a combined interventional radiologic and surgical treatment method showing promising results.


1. Yaşargil MG. Microneurosurgery: AVM of the Brain, History, Embryology, Pathological Considerations, Hemodynamics, Diagnostic Studies, Microsurgical Anatomy. Vol. IIIA: Thieme, 1987

2. Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 1982; 69: 412-422

3. Belov S. Anatomopathological classification of congenital vascular defects. Semin Vasc Surg 1993; 6: 219-224

4. Enjolras O, Wassef M, Chapot R. Color atlas of vascular tumors and vascular malformations. New York: Cambridge University Press, 2007: 1-11

5. Lee BB, Laredo J, Lee TS, Huh S, Neville R. Terminology and classification of congenital vascular malformations. Phlebology 2007; 22: 249-252

6. Lee BB, Lardeo J, Neville R. Arterio-venous malformation: how much do we know? Phlebology 2009; 24: 193-200

7. Donnelly LF, Adams DM, Bisset GS. Vascular malformations and hemangiomas: a practical approach in a multidisciplinary clinic. AJR Am J Roentgenol 2000; 174: 597-608

8. Paltiel HJ, Burrows PE, Kozakewich HP, Zurakowski D, Mulliken JB. Soft-tissue vascular anomalies: utility of US for diagnosis. Radiology 2000; 214: 747-754

9. Rak KM, Yakes WF, Ray RL, Dreisbach JN, Parker SH, Luethke JM, Stavros AT, Slater DD, Burke BJ. MR imaging of symptomatic peripheral vascular malformations. AJR Am J Roentgenol 1992; 159: 107-112

10. Meyer JS, Hoffer FA, Barnes PD, Mulliken JB. Biological classification of soft-tissue vascular anomalies: MR correlation. AJR Am J Roentgenol 1991; 157: 559-564